Ultrahigh mobility and efficient charge injection in monolayer organic thin-film transistors on boron nitride
نویسندگان
چکیده
Organic thin-film transistors (OTFTs) with high mobility and low contact resistance have been actively pursued as building blocks for low-cost organic electronics. In conventional solution-processed or vacuum-deposited OTFTs, due to interfacial defects and traps, the organic film has to reach a certain thickness for efficient charge transport. Using an ultimate monolayer of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) molecules as an OTFT channel, we demonstrate remarkable electrical characteristics, including intrinsic hole mobility over 30 cm2/Vs, Ohmic contact with 100 Ω · cm resistance, and band-like transport down to 150 K. Compared to conventional OTFTs, the main advantage of a monolayer channel is the direct, nondisruptive contact between the charge transport layer and metal leads, a feature that is vital for achieving low contact resistance and current saturation voltage. On the other hand, bilayer and thicker C8-BTBT OTFTs exhibit strong Schottky contact and much higher contact resistance but can be improved by inserting a doped graphene buffer layer. Our results suggest that highly crystalline molecular monolayers are promising form factors to build high-performance OTFTs and investigate device physics. They also allow us to precisely model how the molecular packing changes the transport and contact properties.
منابع مشابه
Synthesis of Boron-Aluminum Nitride Thin Film by Chemical Vapour Deposition Using Gas Bubbler
Boron included aluminium nitride (B-AlN) thin films were synthesized on silicon (Si) substrates through chemical vapour deposition ( CVD ) at 773 K (500 °C). tert-buthylamine (tBuNH2) solution was used as nitrogen source and delivered through gas bubbler. B-AlN thin films were prepared on Si-100 substrates by varying gas mixture ratio of three precursors. The structural properties of the films ...
متن کاملModification of gold source and drain electrodes by self-assembled monolayer in staggered n- and p-channel organic thin film transistors
We report on the effect of the deposition of self-assembled monolayers (SAMs) on the source and drain electrodes on the contact resistance and mobility in organic thin film transistors (OTFTs). Ultraviolet photoelectron spectroscopy (UPS) shows a variation of the work function of the electrodes depending on the SAM. OTFTs were fabricated with solution processible Polyera ActivInk N1400, TIPS-pe...
متن کاملMulti-finger flexible graphene field effect transistors with high bendability
Related Articles Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid microring resonators Appl. Phys. Lett. 102, 051106 (2013) Thermal analysis of amorphous oxide thin-film transistor degraded by combination of joule heating and hot carrier effect Appl. Phys. Lett. 102, 053506 (2013) Programmable ZnO nanowire transistors using switchable polarizat...
متن کاملControlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices.
Atomically thin two-dimensional materials have emerged as promising candidates for flexible and transparent electronic applications. Here we show non-volatile memory devices, based on field-effect transistors with large hysteresis, consisting entirely of stacked two-dimensional materials. Graphene and molybdenum disulphide were employed as both channel and charge-trapping layers, whereas hexago...
متن کاملEvidence of space charge limited flow in the gate current of AlGaN/GaN high electron mobility transistors
Related Articles Off-state breakdown and dispersion optimization in AlGaN/GaN heterojunction field-effect transistors utilizing carbon doped buffer Appl. Phys. Lett. 100, 223502 (2012) Charge transport and trap characterization in individual GaSb nanowires J. Appl. Phys. 111, 104515 (2012) The asymmetrical degradation behavior on drain bias stress under illumination for InGaZnO thin film transi...
متن کامل